

Organic Chemistry Grade 12 P 2

Fhumulani Mutshaeni Department of Chemistry School of Mathematics and Natural Sciences University of Venda

Organic Chemistry

- Study of structure, properties and reactions of Carbon and Hydrogen.
- Hydrocarbons are compounds which contain carbon and hydrogen.
- Organic molecules are molecules which contain carbon atoms.

- Molecular formulae example: Propane
 - C_3H_8

• Structural formulae example: Propane

 Condensed structural formulae
 example: Propane
 CH₃CH₂CH₃

- Functional group: A functional group will undergo the same chemical reaction regardless of the size of the molecule it is part of.
- Homologus series: A family of molecules which have the same functional group but different lengths of carbon chains. They can be represented by a general formula eg: $C_n H_{2n+2}$ (alkanes)

Functional groups

Compound	Structure of Compound	Example		
Name	and Functional Group (red)	Formula	Name	
alkene	c=c	C ₂ H ₄	ethene	
alkyne	c≡c	C₂H₂ →	ethyne	
alcohol	R-0-H	сн _з сн ₂ он 🦂	ethanol	
ether	R-0-R'	(C ₂ H ₅) ₂ O	diethyl ether	
aldehyde	:0: II R—С—Н	сн _з сно	ethanal	
ketone	:0: R—C—R'	сн ₃ сосн ₂ сн ₃	methyl ethyl ketone	
carboxylic acid	:о: R—С—ё—н	сн₃соон	acetic acid	
ester	; ○: R—C—Ö—R'	сн ₃ со ₂ сн ₂ сн ₃	ethyl acetate	
amine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ H ₅ NH ₂	ethylamine	
amide	:0: R—C—N—R' H	CH ₃ CONH ₂	acetamide	

IUPAC

- IUPAC uses three system to naming a compound: parent, prefix and suffix.
- Parent: where and what functional groups.
- Prefix: number of carbon atoms.
- Suffix: homologus series.

Isomerism

- Isomers are compounds with the same molecular formula but different structural formulae.
- Three types of isomers:
 - Chain isomers:

Positional isomers

• Functional isomers

Functional groups and intermolecular forces

- Weak van der waals forces (dispersion or London forces) act between non-polar molecules (alkanes,alkenes, and alkynes).
- Stronger van der waals forces (dipole-dipole interaction) act between polar molecules (aldehydes,ketones, and esters).
- Strong Hydrogen bonds exist between a hydrogen on one molecule and an oxygen on another molecule (alcohol and carboxylic acids).

Chain length and branched chains

- Melting and boiling points increase with an increase in molecular mass.
- Straight chain molecules have higher melting points than branched-chained molecules with the same number of C atoms.

Formula	Name	Molar Mass	Boiling Point (°C)
CH ₄	methane	16	-164
HOH	water	18	100
C ₂ H ₆	ethane	30	-89
CH₃OH	methanol	32	65
C₃H ₈	propane	44	-42
CH₃CH₂OH	ethanol	46	78
C ₄ H ₁₀	butane	58	-1
CH ₃ CH ₂ CH ₂ OH	1-propanol	60	97

Addition reactions

Hydrohalogenation

Hydrohalogenation involves the addition of a hydrogen atom and a halogen atom to an unsaturated compound (containing a carboncarbon double bond). An example is given; X can be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).

Addition reactions Continued,

minor:

Addition reactions Continued,

- Reaction conditions: No water needed, the C atom bonds to the (secondary & tertiary) C atom that is highly substituted, while the H atom bonds to the (primary) C atom with more H atoms.
- Makovnikov's rule is obeyed.

Halogenation

 Halogenation is very similar to hydrohalogenation but a diatomic halogen molecule is added across the double bond. An example is given below.

Halogenation continued,

 Halogenation reaction conditions: Reaction is spontaneous since alkenes are strong nucleophiles, while Br is a also a strong electrophile.

Hydration

 A hydration reaction involves the addition of water (H₂O) to an unsaturated compound. This is one way of preparing an alcohol from the corresponding alkene

Hydration continued,

Hydration reaction conditions: H₂O must be in excess. Use dilute H₂SO₄, HCl, or HPO₃ to catalize the reaction. The H attaches to the (primary) C that has more H, while the OH attaches to the more substituted (secondary & Tertiary) C atom.

Hydrogenation

Hydrogenation involves adding hydrogen (H₂) to an alkene. During hydrogenation the double bond is broken (as with hydrohalogenation and halogenation) and more hydrogen atoms are added to the molecule. A specific example is shown below

Hydrogenation continued,

 Reaction conditions: The alkene is dissolved in a non-polar solvent. Finely divided Ni, Pt or Pd is used as a catalyst in a hydrogen atmosphere. The H atoms attach to the carbon atoms that supported double bond.

Elimination Reactions

• Dehydrohalogenation

 In dehydrohalogenation a haloalkane is exposed to a base, the base then helps the elimination of the halogen and a hydrogen atom. A double bond is formed (alkane → alkene). Dehydrohalogenation is considered the opposite of hydrohalogenation. An example of dehydrohalogenation

 Reaction conditions: Use concentrated NaOH or KOH in EtOH. Heat the mixture under reflux. The reaction favours the secondary or tertiary C atoms.

Dehydration of an alcohol

 During the dehydration of an alcohol the hydroxyl (-OH) group and a hydrogen atom are eliminated from the reactant. A molecule of water is formed as a product in the reaction, along with an alkene. This can be thought of as the reverse of a hydration (addition) reaction

Reaction conditions: Alcohol is heated with concentrated H₂SO₄, or H₃PO₄ as a catalyst. The reaction favours the removal of H atoms from secondary or tertiary C atoms.

Substitution reactions

Formation of haloalkanes

 Haloalkanes can be formed when the hydroxyl (-OH) group of an alcohol is replaced by a halogen atom (X = Cl, Br). This reaction works best with tertiary alcohols where it can occur at room temperature.

• Primary and secondary alcohols react slowly and with heating.

Hydrolysis

 Alcohols can also be formed through a substitution reaction with a haloalkane. In the example given below, the haloalkane would be dissolved in water.

- Dissolve haloalkanes in EtOH, add dilute NaOH and warm the solution.
- The reaction also occurs without a base but at a slower rate.

Formation of haloalkanes from alkanes

 Another way of forming a haloalkane involves the removal of a hydrogen atom from a saturated compound. The hydrogen atom is replaced by a halogen (F, CI, Br or I) to form a haloalkane. As alkanes are not very reactive light is needed for this reaction to take place. • UV light/Heat is need to catalyze this reaction.

Primary, Secondary & Tertiary Carbons

Physical Sciences/P2

NSC

DBE/November 2012

SECTION B

INSTRUCTIONS

- Start EACH question on a NEW page.
- Leave ONE line between two subquestions, for example between QUESTION 3.1 and QUESTION 3.2.
- Show the formulae and substitutions in ALL calculations.
- Round off your final numerical answers to a minimum of TWO decimal places.

QUESTION 3 (Start on a new page.)

The letters A to F in the table below represent six organic compounds.

3.1 Write down the letter(s) that represent(s) each of the following: (A compound may be used more than once.)

3.1.1	An alkyne	(1)
3.1.2	Two compounds that are structural isomers	(2)
3.1.3	A compound containing a carboxyl group	(1)
3.1.4	An aldehyde	(1)
3,1,5	An alcohol	(1)
Write d	own the:	
3.2.1	IUPAC name of compound C	(2)
3.2.2	Structural formula of compound D	(2)

Copyright reserved

3.2

Please turn over

hysica	I Sciences/P2	7 DBE/November 201 NSC	2
3.3	Compour	d F is prepared in the laboratory.	
	3.3.1	How can one quickly establish whether compound F is indeed being formed?	(1)
	3.3.2	Write down the IUPAC name of the alcohol needed to prepare compound F.	(2)
	3.3.3	Write down the IUPAC name of compound F.	(2) [15]

QUESTION 4 (Start on a new page.)

During a practical investigation the boiling points of the first six straight-chain ALKANES were determined and the results were recorded in the table below.

ALKANE	FORMULA	BOILING POINT (°C)
Methane	CH ₄	-164
Ethane	C ₂ H ₆	-89
Propane	C ₃ H ₈	-42
Butane	C4H10	-0,5
Pentane	C5H32	36
Hexane	C ₆ H ₁₄	69

4.1 Write down the:

4.1.1	Most important use of the alkanes in the above table	(1)
4.1.2	General formula of the alkanes	(1)
o the table	a to answer QUESTION 4.2 and QUESTION 4.3 below.	
For this	investigation, write down the following:	
4.2.1	Dependent variable	(1)
4.2.2	Independent variable	(1)
4.2.3	Conclusion that can be drawn from the above results	(2)
VVrite de	own the NAME of an alkane that is a liquid at 25 °C.	(1)
Alkanes molecul	burn readily in oxygen. Write down a balanced equation, using ar formulae, for the combustion of propane in excess oxygen.	(3)
Will the LOWER STRUC explain	boiling points of the structural isomers of hexane be HIGHER THAN, THAN or EQUAL TO that of hexane? Refer to MOLECULAR TURE, INTERMOLECULAR FORCES and ENERGY NEEDED to the answer.	(4) [14]
	4.1.1 4.1.2 the table For this 4.2.1 4.2.2 4.2.3 Write do Alkanes molecul Will the LOWEF STRUC explain	 4.1.1 Most important use of the alkanes in the above table 4.1.2 General formula of the alkanes the table to answer QUESTION 4.2 and QUESTION 4.3 below. For this investigation, write down the following: 4.2.1 Dependent variable 4.2.2 Independent variable 4.2.3 Conclusion that can be drawn from the above results Write down the NAME of an alkane that is a liquid at 25 °C. Alkanes burn readily in oxygen. Write down a balanced equation, using molecular formulae, for the combustion of propane in excess oxygen. Will the boiling points of the structural isomers of hexane be HIGHER THAN, LOWER THAN or EQUAL TO that of hexane? Refer to MOLECULAR STRUCTURE, INTERMOLECULAR FORCES and ENERGY NEEDED to explain the answer.

Copyright reserved

Please turn over

Answers

Answers

• 4.4 $C_{3}H_{8} + 0_{2} \longrightarrow CO_{2} + H_{2}O$ $C_{3}H_{8} + 5O_{2} \longrightarrow 3CO_{2} + 4H_{2}O$

Physical Sciences/P2

8 NSC DBE/November 2012

QUESTION 5 (Start on a new page.)

The flow diagram below shows how three organic compounds can be prepared from 2-bromo-3-methylbutane.

5.1 Write down the:

	5.1.1	Homologous series to which 2-bromo-3-methylbutane belongs	(1)
	5.1.2	Structural formula of 2-bromo-3-methylbutane	(2)
5.2	Reactio	n 2 takes place in the presence of a dilute sodium hydroxide solution.	
	Write de	own the:	
	5.2.1	Name of the type of reaction which takes place	(1)
	5.2.2	Structural formula of compound B	(2)
5.3	Reactio	n 1 takes place in the presence of concentrated sodium hydroxide.	
	VVrite di	- nwe	
	5.3.1	Another reaction condition needed for this reaction	(1)
	5.3.2	The name of the type of reaction which takes place	(1)
	5.3.3	The structural formula of compound A, the major product formed	(2)
5.4	Reactic concent product	on 3 takes place when compound B is heated in the presence of trated sulphuric acid. Write down the IUPAC name of the major formed.	(2) [12]

Copyright reserved

Answers

Answers

• 5.4 2-methylbut-2-ene

Physical Sciences/P2

NEC

DBE/November 2013

SECTION B

INSTRUCTIONS

- Start EACH question on a NEW page.
- Leave ONE line between two subquestions, for example between QUESTION 3.1 and QUESTION 3.2.
- Show the formulae and substitutions in ALL calculations.
- Round off your final numerical answers to a minimum of TWO decimal places.

QUESTION 3 (Start on a new page.)

The letters A to F in the table below represent six organic compounds.

3.1

Write down the letter(s) that represent(s) the following:

3.1.1	Alkenes	(2)
3.1.2	A ketone	(1)
3.1.3	A compound with the general formula CnH2n-2	(1)
3.1.4	A structural isomer of cyclohexene	(2)
Copyright reserved		Please turn over

Physics	al Sciences/P	B DBE/Novem	iber 2013	
3.2	Write do	own the IUPAC name of compound:		
	3.2.1	A	(2)	
	3.2.2	E	(2)	
	3.2.3	F	(2)	
3.3	Compound D is prepared by reacting two organic compounds in the presence of an acid as catalyst.			
	Write de	own the:		
	3.3.1	Homologous series to which compound D belongs	(1)	
	3.3.2	Structural formula of compound D	(2)	
	3.3.3	IUPAC name of the organic acid used to prepare compound D	(1)	
	3.3.4	NAME or FORMULA of the catalyst used	(1) [17]	

QUESTION 4 (Start on a new page.)

A laboratory technician is supplied with three unlabelled bottles containing an alcohol, an aldehyde and an alkane respectively of comparable molecular mass. She takes a sample from each bottle and labels them P, Q and R.

In order to identify each sample, she determines the boiling point of each under the same conditions. The results are shown in the table below.

SAMPLE	BOILING POINT (°C)
P	76
Q	36
R	118

4.1 For this investigation, write down the:

4.1.1	Independent variable	(1)
-------	----------------------	----	---

- 4.1.2 Dependent variable (1)
- 4.2 From the passage above, write down a phrase that shows that this investigation is a fair test. (1)

0

NEC 4.3 Which sample (P, Q or R) is the: 4.3.1 Alkane (1) 4.3.2 Alcohol (1)4.3.3 Refer to boiling point and the type of intermolecular forces present between alcohol molecules to give a reason for the answer in QUESTION 4.3.2. (2)4.4 The alkane is identified as pentane. Will the boiling point of hexane be HIGHER THAN or LOWER THAN that of pentane? Refer to MOLECULAR STRUCTURE, INTERMOLECULAR FORCES and ENERGY needed to explain the answer. (4) [11] QUESTION 5 (Start on a new page.) Two straight chain compounds, P and Q, each have the following molecular formula: P: CaHin Q: CaHa 5.1 Write down the name of the homologous series to which Q belongs. (1)5.2 Compound P reacts with chlorine to form 2-chlorobutane. Write down: 5.2.1 A balanced chemical equation, using MOLECULAR FORMULAE. for the reaction that takes place (3) 5.2.2 The type of reaction that takes place (1)5.2.3 One reaction condition (other than the solvent needed). (1)5.3 Compound Q takes part in reactions as shown in the flow diagram below. Compound Q (CaHa) Bromine Reaction 1

Write down the:

2,3-dibromobutane

5.3.1	Structural formula for 2,3-dibromobutane	(2)
5.3.2	IUPAC name of compound Q	(2)
5.3.3	Balanced equation, using structural formulae, for reaction 1	(4)
5.3.4	Type of reaction that occurs in reaction 1	(1) [15]

Compound P (C4H10)

Copyright reserved

Physical Sciences/P2

Please turn over

DBE/November 2013

Answers

Q

Ρ

Answers

QUESTION 2

Consider the following representation of organic molecules A to F listed in the table below:

A	CH ₃ _CH ₂ _C _CH _CH ₃	в	H = H = H $H = C = C = C = H$ $C = C = H$ $H = C = H$
c	$H = \begin{bmatrix} H & H & H \\ - & H & - & H \\ - & H & - & - & - \\ - & H & - & - $	D	Methanal
E	2-methylhex-3-yne	F	CH3 CH3 - C - CH8 CH3 - H

Write down the letter that represents a compound that: 2.1

	2.1.1 2.1.2 2.1.3 H	is an aldehyde is a saturated hydrocarbon as a general formula C _n H _{2n-3}		(1) (1)
2.2	Write d	own the homologous series to which each of the following unds belongs:		1222
	2.2.1 2.2.2 2.2.3	A B F		
2.3	Write o	fown the:		
	2.3.1	Molecular formula of the next compound in the same homologous serie compound C.	15 218	(1)
	2.3.2	Structural formula of compound E IUPAC name of compound B Exectional group of compound D		(2) (1)
	2,0.9		[12]	
QUE	STION 3			
Two	compour	ds A and B, have the molecular formula C ₂ H ₄ O ₂ .		(2)
3.2	Comp 3.2.1	How will the bolling point of compound A compare to that of compour How will the bolling point of compound A compare to that of compour LICOLER THAN LOWER THAN OF EQUAL TO.	d B. On	ily write
	3.2.2 3.2.3 3.2.4 3.2.5	Write down the name of compound A. To which class of organic compound does compound B belong? Write down the structural formula for compound B and give its IUPAC Explain in terms of intermolecular forces and energy why compour	name. Id Ahas	(1) (3) a lowe
	vapo	ur pressure than compound B. (5)	1111	

[11]

Answers

QUESTION 4

Consider the following sequence of organic reactions and then answer the questions that follow. Reactions are labeled from I to VI while organic compounds are labeled from A to D.

4

Answers

• 4.4.1 $C_{3}H_{8} + O_{2} \longrightarrow CO_{2} + H_{2}O$ $C_{3}H_{8} + 5O_{2} \longrightarrow 3CO_{2} + 4H_{2}O$

Answers

4.44
4.441 Calls +502 - P 3002 + 442
4.440
$$n = \frac{m}{2}$$
 C3 - P 1223 = 36) = 443/m61
= $\frac{m}{3}$ Hg = 1 × 8 = 8) = 443/m61
= 0.25 m61
Mole rateo I mol C3H8 - 3mol Co2
 \therefore 0.25 mol × 3mol Co2 = 0.75 m61
C3Hg $\cos 2 = 0.75$ m61
 $n = \frac{m}{2}$ + $m = n \times M$
 $= 0.15 mol \times 445 mol$
 $C_2 - P16 + 2 = 300/m61$ 443/mol = 3330 C2